Motorola DSP56xxx

TASKING

SOFTWARE DEVELOPMENT TOOLSET

HIGHLIGHTS

Interoperability with
Freescale GNU

Integrated tools deliv-
ering a rapid edit-com-
pile-debug process

Customize to your own
environment

Easy project setup and
management

Graphical symbol
browsing

C/C-+/EC+ compiler

Powerful language
extensions

Comprehensive opti-
mization techniques

Basic and advanced
debugging

Performance analysis
in debugger

RTOS aware

MAXIMIZE APPLICATION PERFORMANCE

Application size and speed are two of the most important aspects of embedded
application development. The optimizing capabilities of the TASKING DSP56xxx
C/C++/EC++ compiler tools and the program performance analysis functionality
of the CrossView Pro Debugger impel you to produce the most efficient code.

The DSP56xxx Software Development Toolset consists of a C/C++/EC++ compil-
er, optimizing assembler, linker/locator, libraries, CrossView Pro debugger, and
EDE (Embedded Development Environment).

COMPATIBILITY AND INTEGRATION WITH FREESCALE GNU

Our DSP56xxx Software Development Toolset supports COFF (.CLD) compatibility
and the GNU calling convention, enabling you to generate code for the Freescale
assembler and linker with COFF compliant debug information.

Support of the Freescale toolchain is fully integrated into our EDE so you can easi-
ly select the entire TASKING toolchain or the TASKING and Freescale toolchain. To
ease migration from the Freescale GNU tools to the TASKING software develop-
ment tools, a migration guide is available. This guide provides helpful hints to keep
in mind during the migration, as well as how to obtain the highest performance
from your application.

EMBEDDED DEVELOPMENT ENVIRONMENT

TASKING's EDE is an integrated environment for tools which create, edit, compile,
and debug your application. With EDE you can create and maintain projects easily,
so your application is always up-to-date. All aspects of a project are saved in the
project file: the source files that make up your application, the compiler and
debugger options, the tool directories, and the options that describe the building
process. File dependencies as well as the sequence of operations required to
build your application are handled automatically.

Code generation is streamlined by EDE. Graphical symbol browsing enables you
to obtain a quick review of any source code by providing an overview of cross ref-
erences in your application (such as defined global variables, functions, and enu-
merations types). Repetitive tasks are automated with a "type ahead" feature that
automatically completes words and provides function parameter help. Graphical
symbols distinguish portions of code, and "go to" buttons take you to their definition.

| TASKING EDE | DSP563xx - C:\tempbB\examplesispectatspectra.pit |

File Edi Seerch Project Ts@ Document Tools Winbow Helo |EDE

B s o] B e Meuss

BB C\tomp56\examplesis p Akl el s -
b CATEMPBEVBIN,Shippetst CCompiler Dptions
ATE P56 BN\ iEpais o m Assemblsr Options
- — — FATIAN NI WA (fleat) Linkst/Locetor Dption -
BLETED [Ebwel) Crossview Pro Option
_fract output[DATASIZE]; Build Optionis
Save/Resiore Oplion
i PEFieHeader _ Direcioiies. r
| B Funciion Heade IS0 J AL ISIS TR, geon Dependencies! ™
T st © Homn All Dependznci
I8l File Header e T i | SeleaTaolchain
b Funcion Hesda | | Tl le it
@ Main g Apout EDE
L Typedef Stuct < Fiarve Ackies v Vi ST ORG |
= cpp - ag.enlan —
@] Class . % |
[l Deriver Cnss e I . su_position = 1. = [&] coon | s | ey ||
il File Header aee v posation - size - |
[Funciion Hesds .'--_H
[Main : .
L s - ateie CiTaphical Symbol
£ | Ea Browsing
- 1per | B2 ————————— -
Cod S b (e KO BT 7/—;| 7 [[FTTVME 2]
Outlines C:UempsElexemplestepectigfspedia oty Defintons:
™ c\tempSh siamplesispectia\spect.c 26
BEEE] | Bl A Fie Fird £ Seweh b Browse A Diterence 4 shell 7 Symbals /

File: CiytampS6haxam ples | spectra| SPECTRAC oEe Ins | Line:26 [Col 76

C/C+/EC+H COMPILER

Complete compatibility
with Freescale GNU
compiler

Code size optimized an
average of 40% better
than GNU

ANSI C and C+
compliant

Embedded C+ (EC+)
support

Static, reentrant, and
mixed memory models

Storage specifiers for
X, Y, L, and P memory

Optimizing assembler

Multiple locator output
formats

EDE also includes the following capabilities:
“ m language sensitive editor

m Convenient code reuse

m Predefined and custom "code outlines”
m Automated make facility

m Librarian

m Built-in grep and file difference

m Tool option selection

m Object code reporter

m HTML language and web browser support

EDE integrates error message output from the
TASKING tools into your editing environment.
EDE interprets the error messages generated
by the tools and indicates where the errors are,
allowing you to fix them quickly.

Code reuse is supported by the ability to click
and drag commonly used code into a folder or
file view. These "snippets" enable your entire
team to define project code outlines and/or
reuse code with other projects.

Using Version Control is easy. EDE includes an
interface for checking in your changes, checking
a file for review or locking a file you plan to
change. EDE also provides an interface to stan-
dard version control packages.

C COMPILER

The ANSI C DSP56xxx compilers are designed
and built specially for each member of the
Freescale DSP family. Use of the fractional
datatype and memory space qualifiers allows
the compiler to optimize loops extensively and
exploit the parallel execution capability of the
DSP. The compiler supports the 16- and 24-bit
mode of the DSP563xx. These features help
you reach unsurpassed code density and make
specific DSP56xxx capabilities directly accessi-
ble from C.

The compiler optimizations developed by
TASKING generate code size that is an average
of 40% (or more) smaller and faster than GNU.
Not only does the compiler generate more effi-
cient code, but the assembler performs addi-
tional optimizations to minimize code size and
execution time.

You can also create bootable EPROM images.
Utilities included with the compiler extract the
data directly from the .abs file and create
images for programming a single 8-bit or paral-
lel 24-bit EPROM's.

C++/EC++

The C++ compiler delivers the power of
object-oriented design and coding to your
DSP application. Full support of templates,
dynamic casts, runtime type identification,
and exception handling is provided. EC++
(Embedded C++) support is available to
reduce the high application overhead often
introduced by C++. The evolving EC++ stan-
dard addresses this issue by omitting a num-
ber of features that are not essential for
most embedded applications. An EC++
option helps you conform to the EC++ stan-
dard.

CLAS Compatibility

The TASKING tool suite supports several fea-
tures which provide compiler interoperability
with the Freescale CLAS tool set. By default,
the compiler uses a different calling conven-
tion than the CLAS compiler. This calling con-
vention guarantees better use of registers,
and therefore, less function call overhead. A
special keyword (_compatible) allows you to
prototype individual functions, thus allowing
the compiler to apply the more optimal
scheme when possible and use the compati-
ble CLAS protocol when necessary.

Compiler Optimization

State-of-the-art optimization techniques are
applied to reduce the size of generated code
and/or decrease execution speed. The fol-
lowing are a sample of the optimization tech-
niques used:

m Compiler generated DO and REP loops

m Effective use of DO-FOREVER and BRKcc

m MAC instruction in computational expressions

m _pear, _internal and _external memory qualifiers
m _fract data type for fixed point arithmetic

m Complex data type

m Built-in support for overflow/saturation

m Circular buffer declarations with _circ type
qualifier

m Cache handling pragma's
m Subexpression elimination
= Loop recognition
m Variable usage analysis
m Register contents tracking
m Automatic stack overflow checking
In addition to the extensive optimizations,

various other features help you to optimize
and tune your code:

In-line expansion of predefined functions, such as: _abs,
_asm, _rol, _ror, _stop, _cmac, _cmul, _cadd, _cdiv, _nop,
_swi, _wait, _round, _pdiv, _fsqgrt. In-line functions do not
incur the typical function call overhead: they translate directly
and have no direct equivalent in C.

Adjustable code generation with #pragma’s. To control the
individual compiler optimizations, allocation of character arrays
(‘packed’ or a character per memory word to optimize for data
size or code speed respectively) and pragma'’s for cache han-
dling.

Circular buffer type modifier for efficient filter implementa-
tion.

Floating point libraries with limited exception trapping to
reduce runtime argument checking.

Memory models to control the allocation of parameters and
automatics to fit the needs of your application. For the
DSP5600x, a static model reduces the use of more expensive
stack relative addressing modes. The reentrant model pro-
vides true stack allocation of objects, and with the mixed
model, you can use a mixture of both flavors, tuning your
code to use the stack only at those places where you really
need it.

Data Types and Sizes
All ANSI C types are supported. Additionally a fixed point data
type (_fract) has been included.

m Built-in functions can retrieve the model, default, and stack memory
space during code generation

m Extensive flow analysis

m Parallel instruction execution

To improve code quality, the assembler performs extensive
flow analysis to determine how instructions can be
rearranged to reduce the code size and increase execution
speed. The assembler also checks whether instruction
sequences with pipeline hazards occur and attempts to avoid
them by reorganizing the code. If no suitable instruction
sequences are available, then the assembler inserts a NOP
instruction to force deterministic (and expected) behavior of
the program.

DSP563x06xx Linker/Lucatur Options [SPECTRAPJT] B

Linksr Dptias | Debug Locminr vt | Locatar sz | Targst Hercwars |
Locetor uput Format
€ TIOF, TASKING formet (shs)
& [EEE-35 1o TASKING Crassviaw Fro Debiger [aks)
 Matorola GLAS GOFFfonmar {old]
£ Motorola 5 records [sre)
£ Intel HEX records {hex)
1 Litery o1 TASKING DEPSES0 B Linker (5]

The assembler has a
built-in macro pre-
processor which fea-
tures an include file
mechanism, macro defi-

nition and expansion, as 3
well as conditional =
assembly. Macros can Gensrats code forepace —

be defined and unde-

& Generate capy (ahle for re-nitalizing date memory

Data Type DSP566xx DSP5600x/3xx
size in bits size in bits

(un)signed char 8 8
(un)signed short 16 16
(un)signed int 16 24
(un)signed long 32 48
(long)_fract 16 (32) 24 (48)
pointer 16 16/24
float/double 16+8 24+8
enum 16 24

Libraries

The compilers are delivered with libraries for all the different
members of the DSP56xxx families. Each set consists of
ANSI C libraries, C++ template libraries, runtime libraries, and
fixed and floating point libraries. The types float and double
are both implemented as single precision floating point.

ASSEMBLER

_Features:
m Compliant with Freescale's CLAS assembler package
m Supports nested and fragmented sections
m Selects shortest possible branch (forward and backward)
m Accepts same model options as compiler
m Macro preprocessing

m Extended set of controls and pseudo instructions for section handling
and list generation

fined at any place in the

ok Cancel ‘ Detaults ‘ Help |
source. The pre-proces-

sor supports a set of controls which help you to create struc-
tured assembly programs.

Move instructions can be executed in parallel with other
instructions if no resource conflicts occur. By automatically
rearranging instructions such that parallel execution becomes
possible, the assembler saves you time while making your
code as compact and fast as possible.

For example, the code:
move x:Fbuffer p,r6

gmove #0, Db

can be replaced by the single instruction:
clr b x:Fbuffer p,r6

Linker/Locator

Features:

m Overlaying linker to reduce memory usage

m Locator overlaying

m Partial linking

= Incremental linking

m Linker & locator map file with symbol values and memory assignments

m Flexible locator control language to control memory layout of your
application

m Locator control files supplied for most commercial targets
m Automatic inclusion of library modules
m Global type checking

m |EEE-695, Motorola S-records, Intel-hex and CLAS (without symbolic
information) locator output formats

CROSSVIEW PRO

Graphical User Interface
to all features

Multiple DSP debugging

Mixed-mode source/
assembly display

Multiple window displays
High speed simulator

Powerful breakpoint
control

Probe points
Breakpoint sequencer

Program performance
analysis

Hardware breakpoints

Bubble-Spy™ technology
for easy and quick
inspection of variable
contents

Record and playback
debug session

Register grouping

Single stepping without
stopping

File system simulation

RTOS aware debugging

CROSSVIEW PRO DEBUGGER

CrossView Pro DSP56xxx interfaces to the
Freescale Application Development System
(ADS), the Evaluation Freescale DSP56xxx
EVM, and the Domain Technologies SB-56K. An
easy-to-use Graphical User Interface combined
with powerful debugging features helps you
debug your applications faster. With the
Freescale Command Converter connected to a
JTAG chain, the CrossView Pro debugger will
allow you to debug multiple DSP’s of the same
family by switching from one processor to
another while the others continue to run.

Features:

“ m Multiple viewing windows (source, register, trace,
memory, stack, data, command) display the type and
level of information needed at any point during the
debugging session

m Display your program as C source text, assembly
source, or a mixture of both

m Single-step through C or assembly source
m Set, clear, enable, and disable breakpoints

m Set software or hardware breakpoints based on
code, data access, instruction/cycle count, stack
level, or complex conditions

m Probe Points can be used to set breakpoints based
upon a sequence of events and controlling I/0 simu-
lation

m Breakpoint Sequencer simplifies creating complex
sequences by providing Boolean functions and sup-
porting nested sequences

m Code, data, complex, stack, and hardware break-
points

m Start and stop recording debug session at any time

m Playback debug session to automate debugging or
test application

€ CrossView Pro DSPH63xx - calc.ahs

Ele Edit Seorch Bun Debug Data Options iew Window Help

m Double-click to modify values or expand and con-
tract complex data structures

m Use assertions for hard-to-find errors
m Watch or show data (global or local)

m Immediately view the values of a variable or
function by simply moving your mouse (Bubble-
Spy)

m Edit, display, and group registers

m Display multiple windows of different register
groups

m Examine the contents of the OnCE/JTAG port
trace buffer

m Observe the state of current stack frame, includ-
ing function parameters

m Monitor and edit the current value of memory
locations

m Open multiple memory windows for different
ranges, and display a different format (ASCII or
numeric) for each window

m High speed instruction set simulator includes
instruction trace, profiling, code, and data coverage

m File system simulation enables the use of regular
I/0 functions such as fopen() and fprintf() to use
files on the host system, with both keyboard and
screen |/0 redirected to CrossView Pro windows

Open Architecture

Public Interfaces such as the Kernel Debug
Interface (KDI) and Generic Debug
Instrument Interface (GDI) provide third
party vendors easy access to the CrossView
Pro framework. The KDI can also be used to
provide RTOS aware debugging for “in-
house” kernels so you can now easily debug
your RTOS-based code.

Ell o 4 omorh Pk [T BE L3 M Gy T S e
[DAD [OAD seu WAL RCICT AESE mmmr G0 sier siee isier wiee W S e B s ur & i
¥ Source : cale.c M= | & Register HEE] ¢ Tooibox ME I
2 - [| RO =000554 NO =000002 =
A i = FE % ree S o Tl
HALT egzc cTant E% ’E} zEsp mer Don Bon n(a\u: c(ugn\n u(?‘m % g M0 =IfIIff RL =00000s Bnst
| i =000000 ML =EEfEE£
15 [Py2e7 |=ctarial ~|[source lines l[s0urce fina sty -] BZ =000ee5 W2 =000003 e
Mz =f£fiff R3 =00000s
¥ =00000€ M3 =EE£EE£
uncigred int facterial{ unsigned int num) R& =00032a N4 =00000a Rerun
W | 0. 3478 |1 M4 =£££5EF RS =000000 _
[e][# |2.7a28 N5 =0004le M5 =EEfEEf
[=]w 0. 3338 RE =000014 W& =000002 Feeturn
MG =fE£iEf R7 =
[E[« |z &=ns N1 =ffffff M7 =EfEE££
b DelalBrk
[s]lw 0. 2278 § 2z =00 A=) i
TR 1o
void main{ woid | 3 e o 5
" t e too +
i "Bubblc Spy" B oy e %S PRIE
[=][« o 3238 printf("rhe factorial Hoook
[|o.oo0s |) addrass +0 + 1 + 2 +3
T ————S—S—S—S—————— e U02£020 0x000002 O:0kE080 Ux000cas
* Trace Instructions M=1F _P:0xd Ox0kL£090 0x000160 0x200013 0x00000«
shzalosesfactorial#le+dSimpy ¥l vl 2 Triox0 Ox0E£1k9 0x000835 0:08 £468 Ox010839
. Lo.erfactorialfila+sce: B
Butloofs SeecLitiAL Ll = Pi0xz Ox0E£1k6 0x00053a 000 £4ba 0x20200a
Ncalc.ci factorial#ld4§7inove al, a = !
| || _z:0x10 PTG 0000251 0000000 0000000
= P:0xld 0000000 0x000000 0:000000 0x000000
Command: CrossView !E. gl = o o
e BN Stack M=)
factorial#ls: + % 2
coin
> 1S E]
factorial#ls: ¥ Bl 0 saciorial (min=z) [-heale. ~:15]
[3]t facterialinmez) [.healc.c:14] ally
al >

BREAKPOINTS AND PROGRAM PERFORMANCE ANALYSIS

Powerful Breakpoints

Setting breakpoints is the feature most often used in a debug-
ging session. The CrossView Pro debugger provides you with
a variety of breakpoint capabilities enabling you to resolve a
simple or difficult problem quickly.

m Code breakpoints halt the program at a particular statement or instruc-
tion so the values of variables can be observed.

m Data breakpoints let you determine when memory addresses are read
and/or written to, and are useful for tracking the possible misuse of
pointers, global variables, and memory mapped /0 ports.

m Complex breakpoints, after reaching an address, check either a register
or memory location for specified values before taking the breakpoint.

m Time breakpoints halt the program after a specified count of cycles or
instructions have been executed.

m Breakpoint sequences of the above, will halt the program only when all
breakpoints in the sequence have occurred.

m On-chip hardware breakpoints enable you to set breakpoints on any
type of memory access or memory range after a number of accesses
and to place breakpoints in ROM.

m Stack breakpoints can be set at either function entry or exit

Program Performance Analysis

The CrossView Pro debugger provides several performance
analysis capabilities to help you further optimize your applica-
tion as well as shorten your debugging session.

These capabilities include:

m Profiling

m Code Coverage
m Cycle Counting

m Programmable Graphical Data Analysis

Profiling helps you identify bottlenecks in your code by
enabling you to perform timing analysis by providing timing
information about a particular function or set of functions. You
can see how often a function is called and how much time is
spent in each function.

Code coverage tracks all memory access (memory read,
memory write, instruction fetch) so you can determine if there
are any areas of unexecuted code. You can also use one of
the timers for cycle counting on the real hardware. Call
counts, timing per line, timing per assembly instruction, and
coverage are available in the simulator.

The Programmable Graphical Data Analysis feature reduces
large sets of data into meaningful visual diagrams to enable
quick detection of gross errors in the input signal. The
CrossView Pro debugger analyzes the data, according to pre-
defined or userdefined specifications, and then displays the
data the way you need it. You can also view the same data in
several ways at the same time (for example, in the time and
frequency domain).

Breakpoints X

Code] Drata] Instructions] Cpcles Timer]Sequence} Preferences]

Time: 100 [Absclute count
Mame: ,— Ende Breakpoint Ad
Count E 3
Bieakpoinl count T =
Cancel
Rezet count: 1 EI He
B
Method Behavior
) € Hadwre Bieakpoin. || [Femave when hil
Breakpaints: € Software Breakpeint I Probe paint
CODE CODE:0x3sf intemnal=F55 & Nopreference
CODE __exit probe_paint End address
INSTR 1 Siataddiess _ ext [CODE D)
CYC 1 probe_paint Browse... ,7
DATA factorial temparary
TIME 100 probe_point (G
=
Help
I~

Five pre-defined analysis types are now available:
xt plotting, xy plotting, FFT power spectrum, FFT waterfall,
and Eye diagram.

£ CrossVicw Pro - grophs.abs
file Edt Seach Hun Debug Data Options Wiew Window Hep

EL -l g s kp K& g | [EBe [62
ot e I St i o S B B R s

QW s
[tmeiman —— mWEE
R S

|

F180 | p.q]
0.2
0.0{
tan |2
0.4

~-180 0.8]

0100 200 300 400 500 60 700 800 odn |
0
[|

40]
20] AT e
o} e
201 N,
_404 |
_EO,
_EO,
-100]
120k

3
i
g

==
=

=

5

=EE

E

o

e
=

!

120 140

PR -
=
b

TASKING

AVAILABILITY
The DSP56xxx solution is available for PC/Windows and
Sun/Solaris.

SUPPORTED DERIVATIVES

DSP5600x DSP563xx DSP566xx
DSP5600xEVM DSP563xxEVM DSP566xxEVM
DSP5600xADS DSP563xxADS DSP566xxADS

The new dual core derivates can also be programmed with
the C compiler, in conjunction with Freescale’s Symphony
tool suite. Contact your local sales representative for
detailed information.

PRODUCT PACKAGING & ORDERING CODES
Each TASKING product comes with full documentation. The
documentation is also available as PDF files.

Product Code Package contents
Combination Package for all DSP5600x, 3xx & 6xx

07-200-039-024 EDE, C/C++ Compiler, Assembler/Linker,
CrossView Pro Simulator

07-200-039-049 CrossView Pro EVM/ADS Debugger
Demonstration versions of the DSP56xxx tools are

downloadable from our web site at:
www.tasking.com/dspb6xxx

Developers forum: www.tasking.com/forum

Copyright © 2012 Altium Limited.

ALTIUM OFFICES WORLDWIDE

North America

Altium Inc.

2175 Salk Ave

Suite 200

Carlsbad, CA 92008
Ph: +1 760-231-0760
Fax: +1 760-231-0761
sales.na@altium.com
support.na@altium.com

Germany

Altium Europe GmbH
Philipp-Reis-Straf3e 3
76137 Karlsruhe

Ph: +49 721 8244 300
Fax: +49 721 8244 320
sales.de@altium.com
support.eu@altium.com

China

Altium Information Technology (Shanghai) Co. Ltd
IBP Shanghai, Level 3 - Building 3

No.168 Linhong Road

Shanghai 200335

Ph: +86 21 6182 3900

Fax: +86 21 6876 4015

sales.cn@altium.com

support.cn@altium.com

Japan

Altium Japan K.K.

22F Shibuya Mark City West
1-21-1 Dogenzaka

Tokyo 150-0043

Ph: +81 3 6672 6155

Fax: +81 3 6672 6159
sales.japan@altium.com
support.japan@altium.com

The Netherlands

TASKING Technology Centre
Altium BV

Saturnus 2

3824 ME Amersfoort

Ph: +31 33 4558584

Fax: +31 33 4550033
tasking@altium.com

TASKING, the TASKING logo, Altium and the Altium logos are trademarks or registered trademarks of Altium
Limited or its subsidiaries. All other registered and unregistered trademarks referenced herein are the property
of their respective owners and no trademark rights to the same are claimed. Altium assumes no responsibility
for any errors that may appear in this document.

www.tasking.com

