
THE TASKING 8051 SOFTWARE DEVELOPMENT TOOLSET
The TASKING Software Development Toolset for the 
8051 architecture provides a complete and cost-effective
solution for programming the 8051 family of
microcontrollers. The complete toolset consists of a 
C compiler, Intel compatible assembler, linker/locator,
librarian, CrossView Pro debugger, and the TASKING EDE
– our Embedded Development Environment that provides
a composite interface to the complete toolset.

EMBEDDED DEVELOPMENT ENVIRONMENT
With the TASKING EDE you can create and maintain
projects easily so your application is always up to date. 
All aspects of a project are saved in a project file, such as
the source files that make up your application, the tool
options (compiler, assembler, linker/locator, CrossView Pro
debugger), the tool directories, and the options that
describe the building process. 

File dependencies as well as the sequence of operations
required to build your application are handled
automatically. The EDE offers you a range of very
productive features for application and code development:

n Easy/Expert modes allow simplified configuration of the TASKING tools and the 8051 target processor for the less experienced user.
After switching to Expert mode, all advanced options become available.

n Project Spaces allow grouping of multiple projects in one view, thus offering project management for more complex developments. 

n CodeSense advanced coding assistance offers rich type-ahead features, which help you to select the next expected function parameter
or available structure members. When positioning your mouse pointer over a function name, the function prototype will be displayed.

n Tags Browsing offers a graphical overview of the application's cross references and allows easy navigation through the available 
variables and functions.

n CodeFolio offers easy insertion of template code, thus adding to coding efficiency and consistency. It allows macro expansion and
prompted input as you insert the code.

n Right-Mouse-Button clicks expedite a variety of tasks within the EDE (e.g., creating new files, adding files to a 
project, etc.).

n HTML View Window has been integrated to allow browsing through the product manuals, your project or code documentation or even
surfing the internet.

n XML collapsible grid
viewer displays a 
hierarchy of the elements and
element attributes in an XML
document.

n Split windows provide full
control over source code by
allowing you to split your file
horizontally or vertically into
as many as four interactive
edit windows.

See the following box
for more highlights of
TASKING's award-
winning EDE. 

HIGHLIGHTS
n Total integrated

development environment

n Easy project setup and
management

n Can be tailored to your
own environment

n Highly optimizing
compiler

n Memory bank switching
support

n MISRA C enhanced code
checking

n Multiple data pointer
support

n Basic and advanced
debugging

n Kernel aware debugging

n Seamless integration
with other TASKING
toolsets

n Available on
PC/Windows and
Sun/Solaris

Acer Laboratories

Aeroflex UTMC

Analog Devices

Atmel

Atmel Wireless &
µControllers

Cygnal Integrated
Products

Cypress

Cypress/Anchor
Chips

Dallas
Semiconductor

Domosys

Hyundai Electronics

Infineon
Technologies

Integrated Silicon
Solution 

Intel

OKI Semiconductor

Philips
Semiconductors

Silicon Storage
Technology

Standard
Microsystems
Corporation

TDK Semiconductor
Corp.

Texas Instruments

Triscend

Winbond Electronics
Corp.

Xicor

A complete overview
is available on our
website.

8051 manufacturers supported

8051 Software Development Toolset



C COMPILER
Unlike other 8051 C compilers, the TASKING C51 compiler has
been designed and built specifically for the 8051 microcontroller
architecture. This means that you can access all the special
features of the 8051 in C without violating any ANSI standards.
Special features include multiple address spaces (with full pointer
support), bit memory, special function registers (I/O ports),
interrupt functions using bank switching, user in-line C functions,
(create your own in-line functions) and much more. 

General features of our C compiler include:

Full ANSI C to ensure early error detection

Complete 8051 family support, desired derivative is 
switch selectable 

In-line functions and in-line assembly

Single precision floating point

Generates Intel-compatible assembly source

Outputs symbol information for debugging

Complete C and run-time library support

Generates reentrant and relocatable code and data

Intel OMF-51 and IEEE-695 object format to ensure
interoperability with debuggers and emulators

Intelligent configuration of startup code

User-controlled mapping of code and data 

Altium's TASKING compilers are tested for ISO or ANSI
conformance against authoritative validation suites such as Plum
Hall and Perennial. Additionally, the optimization techniques of the
compilers are tested with various large real-world applications as
well as industry benchmark standards such as Nullstone and
EEMBC.

MISRA C
Based on the "Guidelines for the use of the C language in vehicle
based software" published by the Motor Industry Software
Reliability Association (MISRA®), Altium is the 
first to implement the MISRA C concept in a software
development environment. MISRA C guides programmers in
writing more robust C code by defining selectable C usage
restriction rules. Through a system of strict code checking, the use
of error-prone C-constructs can be prevented. 

A predefined configuration for compliance with the MISRA
guidelines is available with a single click. It is also possible using
pull-down menus to enable a custom set of MISRA C rules to suit
specific company requirements.

This means that, under the guidance of MISRA C in the TASKING
tool chain, you can write better, more maintainable code that
utilises the benefits of high-level C programming without the
inherent dangers.

Powerful optimizations
The TASKING 8051 C compiler tools implement a wide variety of
optimizations to allow reduction of code and data size as well as
execution time. Optimizations can be applied on the complete
project or specific files, or they can be switched on/off at function
or source line level.

n Hexadecimal editing

n Compile/track errors

n Background symbol compilation

n Print preview

n Difference editing for side-by-side code
comparisons

n Syntax highlighting

n Smart indenting

n Multiple clipboards and scrap buffers.
"Clip View"
to display the contents

n Re-definable keyboard

n Keystroke recording and playback

n Run a command prompt in a buffer

n Configuration Wizards to walk you
through several editor features

n Select text by stream, column, or line

n Drag-and-drop to load files from
Explorer

n File size and scrap buffer up to 2GB

n Maximum number of buffers limited only
by memory and disk size

n Spell check recognizes comments and
string constants

n True soft word wrapping (without
reformatting your code)

n Customize menu, toolbars, and pop up
menus

n Automate your processes using macros

n Version control interface to various
standard products

n CUA, BRIEF, Epsilon, and Vi key maps

POWERFUL EDITING

MAKE YOUR TEXT SMART –
source code is no longer text only

Insert button links in text files to perform
special actions:

n View related documents or diagrams

n Run macros and applications

n View categories and lists of bookmarks and links

n Create pop-up notes

Your source code remains ASCII and 
compatible with other editors.

PRODUCTIVE EDITOR EXTENSIONS

Tailor the editor to your needs and wishes:

n Integrated FTP utility

n Run macros and applications

n View categories and lists of bookmarks and links

n Create pop-up notes

A wide range of various extensions available
from fellow developers.



Optimizations include:

Various loop and jump optimizations to speed up execution and/or reduce
code size.

Common sub expression elimination detects and eliminates repeating (sub-)
expressions.

Common tail merging for finding duplicate sequences of code and merging
them together to reduce code size.

Dead assignment, dead storage and dead code elimination removes all kinds
of unreachable code or invariant data.

Peephole optimizations replace instruction sequences with equivalent but
faster and/or shorter sequences, or delete obsolete instructions.

Data types 
All ANSI types are supported. In addition to these types, _bit,
_sfrbyte, and _sfrbit are added. The keywords _sfrbyte and _sfrbit
are available to access special function registers which deal with
I/O. SFR's are treated like memory mapped variables declared with
the volatile type qualifier. 

Memory models
The C compiler supports four different memory models. 
The memory model determines the default memory type for
variables declared with no explicit memory type, pointers and
function parameters, and automatics. These models can be used
separately or mixed (per function) to ensure the best possible code
generation.

Parameter passing
The C compiler passes up to three parameters in CPU registers. You
can control parameter passing with a command line option and for
each function separately using the _regparm and _cdecl function
qualifiers. If no registers are available for parameter pass, if too many
parameters are involved, or if register passing has been disabled, the
compiler automatically uses fixed memory locations or the virtual
stack. The latter can be controlled with the _small, _auxpage, _large,
and _reentrant function qualifiers which, if used, allow mixed
memory model programming. Passing parameters in CPU registers
in combination with mixed memory model programming significantly
improves the performance of the application.

Built-in functions
Built-in functions generate in-line (faster) code to perform the
library function and utilize certain 8051 instructions that do not
have an equivalent in C. 

Interrupt functions 
C functions can be declared to serve as interrupt service routines.
You can specify the interrupt number and the register bank
selection via the _interrupt and _using function qualifier. The
compiler emits the corresponding interrupt vector and the
appropriate entry and exit code (using the RETI instruction).

Switch statement
The C compiler supports three different methods for implementing
a switch statement. You can control how the compiler should
optimize the switch statement with a #pragma. By default the
compiler will choose the smartest implementation, depending on
the amount and contents of the case statements.

Multiple datapointer support
The toolset has support for 8051 derivatives with multiple
datapointers, such as the implementations from AMD, Dallas,
Infineon Technologies, and Philips. To build an application for 
a specific derivative, the user simply selects this Multiple
Datapointer derivative from a predefined list within the EDE.

Memory banking support
The compiler supports code memory banking, allowing up to 256
banks of 64Kb. Segments are automatically located over all
available banks; the linker detects calls from one bank to another
and inserts stub routines to handle the bank switch.

Libraries
The compiler package includes ANSI C libraries, run-time libraries
including I/O calls (+ printf), memory management, arithmetic
functions, and floating points for both internal and external RAM.
The source code provided for most of the library routines allows
you to tailor the libraries to your specific application.

Toolset Integration
The 8051 tools integrate seamlessly with other TASKING toolsets
into one environment. Switching from one toolset (or version of a
toolset) to another toolset is hassle free and can be performed
instantly. This feature is very helpful if you want to use a specific
version of a compiler in one of your older projects, or want to use
a newer version in your next project. In cases where you want to
upgrade your project to a different architecture, this integration
eases the transition.

THE ASSEMBLER
The TASKING assembler is an integral part of the toolset and
translates 8051 assembly language into relocatable object code.
The assembler accepts Intel compatible assembler source
programs and produces relocatable (.obj) object files. An absolute
or executable load image is then obtained by using the
linker/locator. 

Features of the assembler include:

Production of relocatable object code and listing files

Acceptance of Intel compatible source programs

Compatiblity with high-level and assembly-level debuggers

Optimization of jmp/call instructions

Segment overlay support at the assembly level

Intel compatible macro preprocessor

Extensive segment directives

Error file with textual error reporting

Linker/Locator
The linker/locator is an essential part of the software building
process that enables you to configure the code to match your
target environment. The linker/locator brings together all the
necessary relocatable objects (including library modules), resolves
external references, and then locates the modules 
in memory according to your specification. 



Features include:

Intel-compatible linker controls

Object files and object libraries accepted in the Intel OMF-51 file format

Generation of absolute Intel OMF-51 or IEEE-695 object files

Automatic segment overlaying using call graph information from the 
compiler and assembler

Absolute map files and diagnostic messages 

Automatic inclusion of library modules

Map listing to help with debugging 

CROSSVIEW PRO DEBUGGER
An easy-to-use interface with powerful and extensive debugging
features helps you debug your applications faster. The CrossView
Pro debugger is a true Windows application complete with
multiple, resizable, and independently controlled windows. It
combines the flexibility of the C language with the control of code
execution found in assembly language, bringing functionality that
reduces the amount of time spent testing and debugging. 

Functionality includes:

Bubble-Spy™ technology for quick and easy inspection of 
variables and functions

Large Smartbuttons to maximize the viewable debugger workbench

Tracking scope and monitoring of locals

"Intelligent" source window

Double click and right mouse button functions

You choose the windows you need to view the different aspects of
your code during debugging.

Source window
The working window is the source window. It lets you view
source; set and clear breakpoints, assertions and code coverage
markers; monitor and inspect variables; search for strings,
functions, lines and addresses; call functions and evaluate
expressions; and view performance analysis data. The source
window allows you to view your code at C level or assembly level,
or you can choose a mixed mode that allows you to
simultaneously view your C code intermixed with its corresponding
assembly code.

From the source window, you can jump
directly into the editor within the EDE, and you
will find yourself positioned at the source line
where you had your cursor in the debugger. 

Multiple data windows
Data windows enable you to watch or show
data, browse for locals or globals, double-click
to modify values, or expand and contract
complex data structures. Within these
windows you can reformat (change display
radix and type) on an element-by-element
basis. You can show or watch locals from any
stack level, automatically track and display
locals, and easily copy any variable to a new
window as show or watch.

Register window
The register window displays and modifies
CPU register values. The window is fully
configurable and is updated every time the
program is stopped. Highlighted registers
indicate what has changed since the last stop.

Stack window
The stack window displays the state of the current stack frame.
With simple point-and-click operations, you can set up level
breakpoints, display source for function calls, and display local
variables for selected functions.

Multiple memory windows
The memory window with ASCII display enables you to monitor
any address change, double-click to modify, and have complete
control over the size and format of data.

Coverage and profiling
With coverage you can check whether the code of your application
is reached (executed at least once) or not. Coverage helps you
build a complete test suite for your product, which improves the
quality of your application. The CrossView Pro debugger also
supports coverage of data regions. Profiling allows you to analyze
the performance of your application. You can see how the total
time is divided among the C functions and which functions should
be optimized for speed.

Software assertions
Software assertions let you execute user-specified command lists
after running every line of source code. This is the software
equivalent of data breakpoints, and can be used to set up
sophisticated error checking mechanisms that uncover the most
elusive of bugs.

C-Like macro language
With C-like macro language, you can read and/or modify application
variables and call application functions from macros. It has full C
expression syntax.

Programmable Data Analysis
Programmable Data Analysis enables quick detection of gross
errors in your signal processing routines by reducing large sets of
data into meaningful visual diagrams. The CrossView Pro debugger
can analyze the data according to pre-defined or user-defined
specifications, and display the data the way you need it. This
eliminates the need for reviewing or post-processing large files of
raw data. You can also view the same set of data in several ways
at the same time (e.g., in the time and the frequency domains).



Multiple execution environments
The CrossView Pro debugger supports two execution
environments, a ROM Monitor and a Simulator, with a standard
user interface.

ROM monitor environment
The CrossView Pro ROM debugger can be used with any
commercial off-the-shelf evaluation board or custom-
developed target application. 

The CrossView Pro debugger, running on a host computer system,
communicates with the monitor on the target board via an RS232
interface using a very efficient protocol. 

The resources used by the monitor program are kept to 
a minimum.

The monitor uses:

n 3Kbytes

n One register bank

n 20 bytes of stack space

n 12 bits of bit addressable  memory

Simulator
The simulator environment allows you to test, debug, and monitor
the performance of code in a known and repeatable environment
independent of target hardware. It uses the same description file
as the linker/locator when locating your application, so it therefore
knows exactly where and how memory is mapped. 

All CrossView Pro debugger features, including C level trace,
Code/Data Coverage, performance analysis (profiling), and
unlimited amount of code and data breakpoints, are available to
you so you can test code before target hardware is available.

Open architecture
The CrossView Pro debugger supports a truly open architecture by
providing public interfaces and supporting industry standards.
Public interfaces such as the Kernel Debug Interface (KDI) and
Generic Debug Instrument Interface (GDI) provide third party
vendors easy access and interface to the CrossView Pro debugger
framework. The KDI can also be used to provide kernel aware
debugging for your "in-house" kernel! Visit our website for more
information.

COOPERATION WITH THIRD PARTIES
Working with other suppliers of products for the 8051 architecture
gives us the opportunity to improve the tools that we deliver and
to create a total solution concept for your 8051 application
development. A complete overview of third parties is available on
request.

Emulators
TASKING's 8051 tools are supported by broad range of emulator
manufacturers including, but not limited to, Ashling, Ceibo, Hitex,
Lauterbach, Metalink, and Nohau. 

Real-Time Operating Systems
Amongst the kernel manufacturers that offer a TASKING
compatible kernel are CMX Systems (CMX) and Lineo (RTXC). With
MicroNetTM CMX offers a TCP/IP solution for the 8051.

Evaluation boards
TASKING offers plug-and-play support for various commercial 
off-the-shelf evaluation boards. This allows the user to connect the
CrossView Pro ROM monitor debugger via a serial connection to
the evaluation board and monitor the application with 
CrossView Pro.

CUSTOMER SUPPORT
When you purchase a TASKING product, it is the beginning of a
long term relationship. TASKING is dedicated to providing quality
products and support worldwide. This support includes program
quality control, product update service, and support personnel to
answer questions by telephone, fax or email.



PRODUCT PACKAGING & ORDERING CODES
Each TASKING product comes with full documentation in  binders.
The documentation is available on-line as well and provides full-text
search capabilities for quick and easy lookup of topics.

The 8051 Development Toolset is available for PC/Windows and
Sun/Solaris.

Product Code Package contents
07-200-008-002 EDE, C Compiler, Assembler/Linker, CrossView

Pro Simulator Debugger
07-200-008-024 EDE, C Compiler, Assembler/Linker, CrossView Pro

ROM Monitor and Simulator Debugger

A trial version of the 8051 Software Development Toolset
is downloadable from our website at:
www.tasking.com/8051

Developer’s forum: www.tasking.com/forum

AA LL TT II UU MM  OO FF FF II CC EE SS  WW OO RR LL DD WW II DD EE

NNoorrtthh AAmmeerriiccaa
Altium Inc.
2175 Salk Ave
Suite 200
Carlsbad, CA 92008
Ph: +1 760-231-0760
Fax: +1 760-231-0761
sales.na@altium.com
support.na@altium.com

GGeerrmmaannyy
Altium Europe GmbH
Philipp-Reis-Straße 3
76137 Karlsruhe
Ph: +49 721 8244 300
Fax: +49 721 8244 320
sales.de@altium.com
support.eu@altium.com

AAuussttrraalliiaa
Altium Limited
Level 6, 10 Help Street, Chatswood
NSW 2067
Ph: +61 2 8622 8100
Fax: +61 2 8622 8140
sales.au@altium.com
support.au@altium.com 

CChhiinnaa
Altium Information Technology (Shanghai) Co., Ltd
IBP Shanghai, Level 3 - Building 3
No.168 Linhong Road
Shanghai 200335
Ph: +86 21 6182 3900
Fax: +86 21 6876 4015
sales.cn@altium.com
support.cn@altium.com

JJaappaann
Altium Japan K.K.
22F Shibuya Mark City West
1-21-1 Dogenzaka
Tokyo 150-0043
Ph: +81 3 6672 6155
Fax: +81 3 6672 6159
sales.japan@altium.com
support.japan@altium.com

TThhee NNeetthheerrllaannddss 
TASKING Technology Centre
Altium BV
Saturnus 2
3824 ME Amersfoort
Ph: +31 33 4558584
Fax: +31 33 4550033
tasking@altium.com

www.tasking.com

Copyright © 2012 Altium Limited.

TASKING, the TASKING logo, Altium and the Altium logos are trademarks or registered trademarks of Altium
Limited or its subsidiaries. All other registered and unregistered trademarks referenced herein are the property
of their respective owners and no trademark rights to the same are claimed. Altium assumes no responsibility
for any errors that may appear in this document.


